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FOREWORD

The work reported herein presents the results of an experimental
research program to determine a method for minimizing side moment on a
symmetric pointed body of revolution. This work was authorized under
AIRTASK AO3W-350D/004B/7F32-301-000.
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Division. i
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NOMENCLATURE

Side moment coefficient, n/Qsd
Side force coefficient, Y/Qs
Pitch moment coefficient, M/Qsd
Normal force coefficient, N/Qs
Dynamic pressure, %oV2 (1b/ft2)
Air density (slug/ft3)

Tunnel velocity (ft/sec)

Model maximum diameter (ft)
Reference area, ﬂd2/4 (£ft2)

Nose radius (ft)

Side force, 1b

Side moment, ft/lb
Pitch moment, ft/lb
Normal force, 1b
Angle of attack (deg)

Roll angle (deq)

SI CONVERSION

Multiply By To Obtain
degree 0.01745 radian
foot 0.3048 meter
pound 0.4536 kilogram




INTRODUCTION

Efficient high-speed flight of missiles and aircraft necessitates
the use of slender pointed fuselage forebodies for aerodynamic drag mini-
mization. However, these slender pointed bodies develop significantly
large side moments at high angles of attackl™® that can result in flight
control problems.

The alleviation of this problem is of particular interest to air-
craft designers since these side moments can have a predominant effect
on aircraft stall and spin characteristics. It is also of interest to
the missile designer who contemplates the design of highly maneuverable
guided missile configurations.

Generally, it is agreed that side moments on a symmetric body are
the result of asymmetric vortices that develop at high angles of attack.
The phenomenon is complicated by a switching effect; i.e., side torces
have been observed to change direction with roll angle. Side forces and
moments are relatively more severe at low velocities and gradually dimin-
ish as the velocity increases.

Jorgensen6 has measured side forces and moments on numerous config-
urations and showed that body geometry has a strong influence on their
magnitude. Therefore, it was felt that given sufficient freedom to vary
body geometry, shapes could be evolved that develop near minimum side
moment.

A composite model of a lO-caliber ogive cylinder, whose schematic
is shown in Figure 1, was fabricated and wind tunnel tested in order to
evaluate this hypothesis. This paper presents the results of that study.

COMPOSITE OGIVE CYLINDER

A composite model (CPM) of a 1l0-caliber ogive cylinder was fabri-
cated at the Naval Surface Weapons Center, White Oak Laboratory (NSWC/WO),
in order to study the effect of geometry variation on side moment.

The basic configuration shown in Figure 2a has its component parts
supported by a steel rod through the center. The parts may be disassem-~
bled by unscrewing the threaded nose cap. The base of the model is de-
signed to contain a sting mounted, four component, strain gage balance.

Figure 2 compares the basic configuration with configurations having
radical variations in geometry. These variations are shown only to il-
lustrate the models' utility.
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WIND TUNNEL TEST PROCEDURE

Static force tests were conducted in the Edgewood Arsenal 28- by
40-in. subsonic wind tunnel.’ Normal force, pitching moment, side force,
and side moment coefficients were measured in aeroballistic axes (non-
rolling). All moments are referenced about the model base. Angles of
attack from 0 to 90° were investigated.

Preliminary tests revealed that the composite model, because of a
lack of rigidity, could only be tested at tunnel velocities less than
100 mph. Model vibrations above this velocity were too severe to obtain
good quality data. Consequently, initial tests were conducted at 85 mph
because of the good performance of the model and balance system. Later
tests were conducted on conventionally fabricated models at higher veloc-
ity.

TEST RESULTS

COMPOSITE MODEL

Initially, the variation of the static stability coefficients with
angle of attack and for roll angles of 0, 90, and 180° were evaluated for
the basic configuration (ogive cylinder shown in Figure 2a). Figure 3
presents these data.

The side moment coefficient changes sign with roll angle as ex-
pected4 and has a maximum value nearly equal to half the pitching moment.
Slight differences in the normal force and pitching moment coefficients
with roll angle were obtained.

The initial runs showed that it was very time consuming to properly
roll the composite model on its sting. Consequently, it was decided that
further tests on the composite model would be conducted at a roll angle
of 0° and the pertinent test results be verified with conventional models
at a later date.

Figure 4 presents the lateral stability characteristics versus angle
of attack for the minimum volume configuration with pointed and blunted
nose caps. The lateral stability coefficients for these configurations
are small as expected.

The blunted nose cap was introduced at this time since it had been
shown that nose blunting reduces side moment.® The thickened rear sec-
tion (cylinder-cone frustum) of the model is required as a housing for
the strain gage balance.
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The cylinder-cone frustum (that is the rear portion of the model)
was systematically extended, as shown in Figure 5, until appreciable side
moments developed. Figure 6 shows the lateral stability characteristics
and near maximum cylinder-cone frustum length for near minimum side moment.
Longer lengths were shown to generate large side moments.

The effect of nose reconstruction is presented in Figure 7. Further
lengthening of the nose generated large side moments.

The effect of reducing the resulting gap depth is shown in Figure 8.
Further gap depth minimization was not attempted. The blunted ogive
cylinder with gap, shown in Figure 8, has a maximum side moment of less
than 10% of the side moment developed by its pointed counterpart with
straight afterbody (see Figures 2a and 3).

Restoring the afterbody to a constant cross section, as shown in
Figure 9, resulted in large side forces and moments. Comparing Figure 3
with Figure 9 indicates no reduction in side moment due to the nose
bluntness (rp/d = 0.1725).

Further testing showed that the step down (behind the nose) had to
be abrupt in order to produce the desired effect.

CONVENTIONAL MODEL

Convention models (CVM) made up of nose and afterbody sections were
fabricated in order to evaluate test results obtained with the composite
model. These models were also used to study the effect of roll angle and
velocity variation. Roll angles of 0, 90, 180, and 270° were investigated
at velocities of 85, 120, and 140 mph which is the tunnel maximum veloc-
ity. Figure 10a is a photograph of the ogive cylinder test configu-
ration (CVM). The aerodynamic characteristics of this configuration at
85 mph are in excellent agreement with the results obtained for its CPM
counterpart (see Figures 3 and 11). Aerodynamic characteristics for the
ogive cylinder (CVM) at higher velocities are presented in Figures 12 and
13.

Comparing Figures 11 and 13 with Figures 12, it is noted that the
primary effect of changing velocity is to cause the side force to change
direction at ¢ = 90,270°.

The aerodynamic characteristics of the blunted ogive cylinder (CVM),
shown in Figure 10b, are presented in Figures 14 through 16. The side
forces and side moments are significantly reduced at 85 mph and are in
poor agreement with the composite blunted ogive cylinder data shown in
Figure 9. However, at higher velocities (Figures 15 and 16), large side
forces and moments develop at ¢ = 270°.




Figures 17 and 18 present the aerodynamic characteristics of the
blunted ogive cylinder with gap (CVM), whose configuration is shown in
Figure 10c. The data is in good agreement with the composite model at
V = 85 mph, and side forces and moments are considerably reduced. How-
ever, as the velocity is increased to V = 120 mph, the gap becomes con-
siderably less effective.

It was felt that the step up (cone frustum) might be the cause of
the increased side moments at V = 120 mph, and consequently the cone
frustum was eliminated.

The two configurations in Figure 19 having blunted noses and two
different afterbody step downs were fabricated and wind tunnel tested.
Cne body had a step down equal to the step down of the composite model
in Figure 8 (see square symbol). The step down of the other model (min-
imum step) was half of the depth of the composite model in Figure 8.

Both bodies experienced very minimal side moments at all velocities
tested. The aerodynamic characteristics of the blunted ogive with mini-
mum Step is presented in Figures 20 through 22. No further minimization
of the step down was attempted. An even smaller step down might be
equally as effective.

Combining a pointed ogive with the step down afterbody (Figure 19c)
did not sufficiently reduce the side forces and moments. This result is
shown by comparing Figures 23 through 25 with Figures 20 through 22.
Further improvement of the lateral aerodynamic characteristic of the
pointed ogive with step down might have been accomplished by optimizing
its geometry via the composite model.

Coe4 has shown that a parabolic nose (without afterbody) does not
exhibit side forces and moments at low speed. Consequently, a three-
caliber nose was fabricated to be used with the seven-caliber afterbodies
to provide comparison data with the ogive cylinder configurations. These
models are shown in Figure 26.

Test results (Figures 27 through 29) showed that the parabolic nose
cylinder body developed side forces and side moment that are somewhat
smaller than the pointed or blunted ogive cylinder. The lateral char-
acteristics of the parabolic nose cylinder with step down are further
improved by the afterbody step down (see Figures 30 through 32). However,
the blunt ogive cylinder with step down developed the lowest side forces
and side moments. A schematic of the ogive cylinder modified for minimum
side moment is presented in Figure 33.




FLOW VISUALIZATION STUDY

A flow visualization study of the leeward wake structure of the
pointed ogive cylinder and the blunted ogive cylinder with step down was
conducted in the University of Notre Dame low turbulence smoke tunnel.
Figures 34 and 35 are sketches of the wind tunnel and test setup.8

Figures 36 and 37 compare smoke photographs of the ogive cylinders
at angles of attack of 35 and 45° and a tunnel velocity of 30 ft/sec.
Photographs of the pointed ogive cylinder show very distinct vortex cores,
and it would appear that the presence of the blunt nose and step down
diffuses the wake and somewhat diminishes the vortex strength. However,
these conclusions are mainly conjecture. Flow visualization at higher
angles of attack and higher velocity was unsatisfactory.

CONCLUSIONS

The following conclusions were made based on the results of this
study.

1. Side moment on an ogive cylinder can be minimized at low speed
by nose blunting and afterbody step down.

2. Proper design can result in side moment reduction on the order
of 90%.

3. High-speed tests should be conducted in order to further evalu-
ate the design.




TANGENT OGIVE

(ALL DIMENSIONS IN CALIBERS)

Figure 1. Schematic of Ogive Cylinder Model
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a. COMPOSITE OGIVE-CYLINDER

=t — 82

b. OGIVE-CYLINDER WITH RADICAL VARIATION
OF AFTERBODY GEOMETRY

13t ——Fg

c. RADICAL VARIATION OF NOSE AND
AFTERBODY GEOMETRY

Figure 2. Composite Model Showing Possible Radical Variations in
Geometry
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Figure 5. Systematic Extension of Cylinder-
Cone Frustum
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a. OGIVE CYLINDER (CVM)

b. BLUNTED OGIVE CYLINDER (CVM)

c. BLUNTED OGIVE CYLINDER WITH GAP (CVM)

Figure 10. Conventional Ogive Cylinder Configu-
rations
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a. BLUNT OGIVE CYLINDER WITH MAXIMUM
STEP DOWN (CVM)

b. BLUNTED OGIVE CYLINDER WITH MINIMUM
STEP DOWN (CVM)

c. OGIVE CYLINDER WITH MINIMUM STEP
DOWN (CVM)

Figure 19. Ogive Cylinder Configurations with
Step Downs
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a. PARABOLIC NOSE CYLINDER
BODY (CVM)

b. PARABOLIC NOSE CYLINDER
BODY WITH MINIMUM STEP DOWN
(CVM)

Figure 26. Parabolic Nose Cylinder Models
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